
Abstract A previous paper in this journal has described
the conventional statistical analysis of three databases
(Caucasian, Afro-Caribbean and Asians from the Indian
subcontinent) where individuals are typed at six short tan-
dem repeat (STR) loci. This paper presents a Bayesian
analysis of the same data and the approach is centred on
the concept of estimating coancestry coefficients from
mixed databases. Posterior distributions for the three data-
bases are presented and discussed and the consequences
of implementing bootstrap estimation procedures are also
shown.
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Introduction

Evett et al. (1997) described the conventional statistical
analysis of data from 602 Caucasians, 190 Afro-Caribbeans
and 257 Asians of Indo/Pakistani descent using samples
analysed with the new six-locus multiplex short tandem
repeat (STR) profiling system described by Kimpton et al.
(1994). The authors of the former paper expressed reser-
vations with regard to the usefulness of conventional sig-
nificance testing within the context of forensic science
practice. Those reservations have been discussed in
greater detail elsewhere by Evett (1996) and Evett and
Buckleton (1996). In particular, the exact test (Zaykin et
al. 1995) applied to data from six loci leads to 63 signifi-

cance tests. Even if the idealised null hypotheses of per-
fect within- and between-locus independence were true –
which, of course, they cannot be – a proportion of signif-
icance tests are expected to fail by chance alone. Attempts
to rectify this by means of Bonferroni corrections (for
multiple comparisons) merely serve to reduce the power
of the testing regime and provide no useful insight as to
whether effects, real or artefactual, have any meaningful
impact on forensic procedures.

Departures from equilibrium conditions will be caused
by population substructure and so any successful method
should be applied directly to estimation of the magnitude
of such phenomena, in particular through the estimation
of θ, the coancestry coefficient. Classical methods of do-
ing this, as described for example by Weir and Cockerham
(1984), require that data be collected from the relevant
identified subpopulations. In forensic science, however,
such data are not in general available. Instead, a con-
venience sample will have been drawn from the full het-
erogeneous population and there is no meaningful way of
assigning individuals in the sample to discrete component
subpopulations. Foreman et al. (1997) showed how, in
spite of this difficulty, suitable probability distributions
could be derived for STR quadruplex data by developing
and extending the work of Roeder et al. (1997) and Bald-
ing and Nichols (1995).

In summary, the Bayesian approach starts with a prior
probability distribution for θ, p(θ), which is modified by a
likelihood function calculated from the data, p(DATAθ),
yielding a posterior distribution, p(θDATA). The prior
distribution represents our beliefs about the value of θ
prior to observing any data. A flat distribution essentially
corresponds to “ignorance” while a highly peaked distri-
bution concentrated on some interval [a, b] indicates very
strong prior beliefs that θ ∈ [a,b]. The likelihood simply
describes the behaviour of the data (in our case, observed
allele pairs) in terms of θ. It tends to highlight those val-
ues of θ which are supported most by the data. The process
of updating our prior beliefs in the presence of further
information contained in the data is then achieved via
Bayes’ theorem:
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p(θDATA) α p(θ) × p(DATAθ) (1)

The resulting posterior distribution represents a weighted
combination of the prior information and the data; in fact,
the more data are available, the more the likelihood tends
to dominate the prior. The posterior value of any function,
f (θ), may then be obtained by performing the mathemati-
cal operation of integration with respect to the posterior
distribution. For further details on the theory of Bayesian
inference, see Bernardo and Smith (1994).

In this paper, we adopt the generic notation x to repre-
sent the STR profile of an individual typed at six loci la-
belled as 1. D18, 2. D21, 3. THO1, 4. D8, 5. FGA and 6.
VWA. The current datasets are each composed of n pro-
files, D = {xd

1, xd
2,…,xd

n}, where n is 602 (Caucasian), 190
(Afro-Caribbean) and 257 (Asian). Based on these data,
empirical estimates for the set of allele distributions, γ,
exhibited in each racial group may be obtained using the
appropriate database allele proportions. These are pre-
sented in the form of simple “look-up” tables in Evett et
al. (1997).

We denote by x0 the STR profile of the offender (O)
which is recovered from the crime scene and by xs the
STR profile of the suspect accused of the crime (S). Then,
if the profiles match and x denotes the shared profile, the
likelihood ratio (LR) representing the strength of evidence
in support of the hypothesis that the suspect and offender
are the same person is given by

The denominator is referred to as the conditional match
probability and represents how likely it is that an individ-
ual exhibits the profile x, given that another individual
does. Thus, the match probability will vary according to
how the suspect and the offender are genetically related
when they are not the same person. Foreman et al. (1997)
address the two main cases which are again considered
here for the new STR data:

(a) actual offender belongs to the same subpopulation of
the suspect’s racial group,

(b) actual offender belongs to another subpopulation in
the same/different racial group as the suspect.

The match probability of x under scenario (a) may be
computed using a formula derived for a single-locus
genotype by Balding and Nichols (1994, 1995):

This is expressed in terms of the subpopulation coancestry
coefficient, θ, and allele proportions, γi and γj, exhibited in
the suspect’s racial group. The conditional match proba-
bility for the full profile x is then obtained by multiplying

terms such as (2) across all six loci. Under scenario (b),
where the offender and suspect are effectively unrelated,
the conditional match probability reduces to the propor-
tion of the profile x in the racial group of interest and may
be computed using the product rule; i.e. by effectively
multiplying together component allele proportions. This
is equivalent to substituting θ = 0 in (2) for all loci.

One issue which may be important when presenting
DNA evidence in court relates to the idea of “conserva-
tiveness”; i.e. do the methods of LR calculation tend to
yield figures which err in favour of the suspect? It can be
shown that, for all practical realisations of the allele dis-
tributions γ, the match probability expression in (2) is an
increasing function of θ given γ, resulting in more conser-
vative values for larger θ. Therefore, assuming the suspect
and offender to belong to the same subpopulation of a
racial group P (where θ > 0 and (2) is used) is more con-
servative than assuming they belong to a different sub-
population in P (where θ = 0 and the product rule is im-
plemented), since the former will yield larger match prob-
abilities and, hence, lower LR values. Thus, excluding the
special case where the suspect and offender are close
blood relatives, which will usually be dealt with sepa-
rately, it is common practice at the Forensic Science Ser-
vice to calculate the LR under scenario (a) for the of-
fender’s racial group when known; otherwise, the mini-
mum value across all racial groups is reported.

Inference for the coancestry coefficient, θ

We concentrate on evaluating LRs in case (a) where the
suspect and offender, if not the same person, are assumed
to belong to the same subpopulation of the racial group P.
Since individuals are classified solely by broad racial
group and information at subpopulation level is unavail-
able, it is necessary to implement Equation (2) to evaluate
the match probability in this case. The set of allele distri-
butions, γ, exhibited in P will typically be estimated by γ̂ ;
i.e. the allele proportion estimates as observed in the aug-
mented dataset D′, where the suspect’s profile is added
twice to the observed database D (see Section 3 of Fore-
man et al. (1997) for the Bayesian explanation). Thus, we
are reduced to drawing inference about θ = (θ1,θ2,...,θ6),
the set of coancestry coefficients, one for each locus, cor-
responding to individuals in the subpopulation of interest
with respect to γ̂ in P.

Following Foreman et al. (1997), our analyses for θ are
conducted “off-line” without knowledge of the particular
matching profile x and, in this case, inference is based
only on the observed dataset D. Under a Bayesian ap-
proach, we make inference about the unknown quantity θ
via the posterior distribution p (θD, γ̂ ). The likelihood
adopted here is termed the profile-product likelihood in
our earlier paper and the quantity θ in this case may be in-
terpreted either as a combined coancestry measure across
all subpopulations at the finest level of subdivision of P
(Foreman et al. 1997) or as a measure of excess homozy-
gosity in the racial group (Roeder et al. 1997). Further-
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more, independent Beta(1.5,50) priors are adopted for θj

at each locus. This corresponds to vague prior beliefs that
each θj is likely to be less than 0.1 since values higher
than this tend to be associated with close blood relations;
e.g. θ = 0.125 corresponds to coancestry between uncle
and niece. The Beta(1.5,50) distribution is centred about a
median value of 0.023 and a mean of 0.029 so our prior
beliefs are that θ is much higher than suggested by other
analyses of STR data (e.g. Gill and Evett 1995). This may
therefore be considered a “cautious” choice of prior since
it is biased in such a way as to be non-prejudicial to the
suspect. The form of the posterior distribution, p(θD,γ̂ ),
resulting from the application of Bayes’ theorem in (1), is
too complicated to allow evaluation of match probabilities
directly by integration. However, the Gibbs sampler is a
powerful stochastic simulation technique, belonging to
the general family of Markov chain Monte Carlo methods
(Smith and Roberts 1993), which may be employed to
generate iteratively an approximate sample of θ values
from p(θD,γ̂ ). The value of any posterior quantity of in-
terest (in particular, the match probability of x) may then
be estimated by finding an average over this sample. The
Gibbs sampling strategy which applies here is outlined in
the Appendix of Foreman et al. (1997).

Table 1 summarises the prior and posterior distribu-
tions for θ in each racial group based on a Gibbs sampler
run of T = 30,000 iterations. Figures 1–3 illustrate further
by comparing prior and posterior densities for θ at locus
D21. It can be seen that the posterior distribution in each

case is more peaked and concentrated about lower values
than originally believed and specified in the prior. Fur-
thermore, the larger the database, the more peaked the
posterior distribution which clearly illustrates the effect of

Table 1 Prior and posterior
distribution summaries for θ
under Beta(1.5,50) priors when
the θj’s are modelled indepen-
dently

Locus 5th percentile Median Mean 75th percentile 95th percentile

Prior
All loci 0.0035 0.0233 0.0291 0.0401 0.0748

Caucasian
D18 0.0016 0.0100 0.0116 0.0161 0.0270
D21 0.0015 0.0087 0.0103 0.0142 0.0245
THO1 0.0019 0.0114 0.0135 0.0187 0.0326
D8 0.0014 0.0087 0.0104 0.0144 0.0253
FGA 0.0024 0.0125 0.0141 0.0192 0.0306
VWA 0.0047 0.0204 0.0219 0.0295 0.0444
Average 0.0136

Afro-Caribbean
D18 0.0032 0.0182 0.0210 0.0291 0.0484
D21 0.0028 0.0167 0.0194 0.0268 0.0455
THO1 0.0018 0.0111 0.0136 0.0188 0.0342
D8 0.0016 0.0108 0.0132 0.0183 0.0330
FGA 0.0044 0.0232 0.0259 0.0355 0.0566
VWA 0.0048 0.0271 0.0305 0.0421 0.0677
Average 0.0206

Asian
D18 0.0024 0.0152 0.0180 0.0249 0.0430
D21 0.0020 0.0122 0.0146 0.0203 0.0353
THO1 0.0026 0.0159 0.0189 0.0263 0.0457
D8 0.0035 0.0203 0.0229 0.0315 0.0515
FGA 0.0041 0.0201 0.0224 0.0305 0.0482
VWA 0.0036 0.0206 0.0234 0.0324 0.0529
Average 0.0200

Fig.1 Caucasian: comparison of the prior (· · ·) and posterior (––)
density for θ at locus D21



the data in the learning process; i.e. in strengthening pos-
terior beliefs. We note that locus VWA for the Afro-
Caribbean group is the only case where the posterior dis-
tribution is located about higher values than the prior, al-
though the difference is minimal. This observation seems
to support our claim that the choice of Beta(1.5,50) priors
is a cautious one in the sense that the data, through the
likelihood, are indicating smaller θ values. The magnitude
and variation of the θj’s across loci may offer an explana-

tion for significant test results obtained in Evett et al.
(1997). For example, we observed relatively large θ val-
ues for loci FGA and VWA in the Afro-Caribbean group
(Table 1), the same loci which were responsible for the
failure of homozygosity and exact tests in Evett et al.
(1997). This confirms that the presence of a high level of
coancestry within subpopulations is the main factor gov-
erning departures from allele independence assumptions.
As in our earlier paper, we use mean values to summarise
the posterior distribution of θj at each locus j and, from
Table 1, these are approximately 0.015 in the Caucasian
group and 0.02 in the Afro-Caribbean and Asian groups,
averaging across loci. By definition, we would expect the
most likely values of θ to be higher than FST values esti-
mated using classical procedures and commonly appear-
ing in the literature; e.g. Gill and Evett (1995). However,
this is confounded by the effects of database size; i.e. for
the relatively small datasets analysed here, the likelihood
does not have the power, in terms of volume of data, to
overwhelm the cautious prior information. This may ac-
count, in part, for the fact that posterior values in the Cau-
casian group tend to be lower than for the other two
groups. However, there are grounds for expecting higher
coancestry levels within the Asian group in particular, due
to cultural and social factors governing marriages and,
thus, imposing a pattern of preferred mating within cer-
tain subgroups.

The output sample of θ values from the Gibbs sampler
may be used to evaluate match probabilities. The fully
Bayesian method involves integration of the match proba-
bility expression, using Equation (2), with respect to the
posterior distribution p(θD,γ̂ ). This may be estimated by
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Fig. 2 Afro-Caribbean: comparison of the prior (· · ·) and posterior
(––) density for θ at locus D21

Fig. 3 Asian: comparison of the prior (· · ·) and posterior (––) den-
sity for θ at locus D21

Fig.4 Caucasian: scatterplots comparing log(LR)’s under the
Bayesian and plug-in methods



averaging the match probability expression over the sam-
ple of values for θ generated from the posterior distribu-
tion via the Gibbs sampler. The “plug-in” method provides
an efficient approximation to full integration by simply
substituting an estimate, θ̃, for θ in the match probability
formula. We may compute the LR associated with a match
for each profile in the database of all three racial groups
under both methods. Figure 4 presents a scatterplot com-
paring “log(LR) under the Bayesian method” versus
“log(LR) under the plug-in method with posterior mean
estimates at each locus, θ̃” for each profile in the Cau-
casian database. To aid comparison, the “x = y” line is 
also plotted, along which exact agreement exists between
the two methods. In fact, there is very close agreement for
most of the observed profiles when mean θ estimates are
substituted in the plug-in method. Similar plots were ob-
tained for the other two racial groups. When the θj’s are
modelled independently, therefore, the above analyses
support the case for adopting the mean value of θj aver-
aged across loci, θ̄, as a single summary measure of the
full posterior distribution for θ representative of the gen-
eral degree of substructure exhibited within a racial
group. This facilitates comparisons between populations
and with values obtained in other studies.

In order to illustrate the effect of adopting alternative
priors, we repeated the analyses under a flat uniform prior
restricted to the interval [0,0.05] and a Beta(1.5,100)
prior. The former is more cautious than a Beta(1.5,50)
prior, reflecting prior ignorance, and the latter is less cau-
tious, exhibiting a mean value of 0.0148 compared with a
mean of 0.0291 under the Beta(1.5,50) distribution. It was
found that adopting the less cautious and tighter prior dis-
tributions tends to yield tighter posterior distributions
with shorter tails and located about lower values. This is
illustrated in Table 2 which presents the single summary
value, θ̄, for each racial group under each of the three pri-
ors discussed here. It can be seen that both the constrained
uniform prior and the Beta(1.5,50) prior yield similar re-
sults, suggesting that the latter prior can be considered

reasonably non-informative. In the final case, where much
stronger prior knowledge of small θ is assumed, θ̄ values
are much lower. Thus, it is clear that the choice of prior
distribution has a non-negligible effect on the posterior
distributions of θ when studying the small databases cur-
rently available for this STR system.

Until now, we have assumed the θj’s to be independent
a priori. However, in the absence of disturbing forces, all
the θj will be equal. In reality, they are likely to originate
from the same value and, apart from the effects of differ-
ing mutation rates, they undergo the same evolutionary
process. Therefore, it might be considered more appropri-
ate to assume the θj’s to be constant across loci, equal to
θ, say. In this case, a similar Gibbs sampling strategy may
be applied. The resulting posterior distribution summaries
of θ are presented in Table 3. By comparison of Tables 1
and 3, we can see that the posterior mean of θ for each
racial group is approximately half the corresponding value
for θ̄ when the θj’s are modelled independently. This must
be, in part, due to the fact that all the data across loci are
employed to draw inference about the single quantity θ
associated with each racial group. Thus, 6 times more “es-
timating data” are available in this case to dominate the
cautious prior information and yield posterior distribu-
tions closer to zero than those given in Table 1.

Dealing with the effect of small data samples 
on calculations

There is no simple answer to the question “how large
should my database be?”. In practice, the size will emerge
from compromise, with the availability of samples a ma-
jor factor. In the previous paper, we dealt with larger data-
bases than are covered by the present study and one issue
to be addressed is the sensitivity of the posterior distribu-
tion to sampling variation. Of course, results will vary
from one observed dataset to another, to a greater extent
when the sample sizes are smaller. The effect of small-
sample variation on γ estimates will be minimal once the
suspect’s profile, xs = x, has been added twice to the data-
base, since this ensures a conservative correction (often
termed the size-bias correction). In the case of the co-
ancestry coefficients, it has already been demonstrated
that the Beta(1.5,50) priors we are adopting are quite cau-
tious so we would expect to obtain larger θ values (and,
thus, smaller LR values) than would be observed under
larger data samples. However, one option for taking ac-
count of sample variation is to adopt θ estimates repre-
senting some “upper bound” on posterior mean values as
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Table 2 Comparison of the average θj value, θ̄, for each racial
group under various priors

Caucasian Afro- Asian
Caribbean

Prior
Uniform on [0,0.05] 0.0142 0.0209 0.0211
Beta(1.5,50) 0.0136 0.0206 0.0200
Beta(1.5,100) 0.0102 0.0132 0.0131

Table 3 Prior and posterior
distribution summaries for θ
under Beta(1.5,50) priors when
the θj’s are assumed constant
across loci, equal to θ

5th percentile Median Mean 75th percentile 95th percentile

Prior 0.0035 0.0233 0.0291 0.0401 0.0748
Caucasian 0.0011 0.0059 0.0065 0.0090 0.0141
Afro-Caribbean 0.0019 0.0098 0.0110 0.0150 0.0242
Asian 0.0025 0.0118 0.0127 0.0173 0.0262



they vary across different small datasets of size n. This is
in an attempt to avoid the suggestion in court that, had we
observed a different dataset, the results would be very dif-
ferent, possibly to the advantage of the suspect.

Given only the single observed dataset, D = {xd
1, xd

2…,
xd

n}, from the racial group of interest, one procedure
which is often adopted to deal with the problems of small-
sample variation is the re-sampling method known as
bootstrapping (Young 1994). This allows us to approxi-
mate the underlying variation in mean θ values which
would be observed in different datasets originating from
the racial group. To explain briefly, any random sample of
n profiles can be considered representative of the entire
distribution of profiles underlying the racial group. An
empirical estimate of this profile distribution simply as-
signs a probability of – to each of the n observed profiles.
Thus, by uniform re-sampling (with replacement) of pro-
files from the original observed database, D, we may sim-
ulate a new dataset of n profiles, Dnew, which is approxi-
mately drawn from the full racial group. A suitable re-
sampling strategy may, thus, be described as follows:

(1) A sample of n profiles is drawn uniformly and with
replacement from the original observed database, D,
to yield a new dataset, Dnew = {x1

new, x2
new,…,xn

new}.
(2) Based on this new dataset, Dnew, the associated set of

allele distributions, γ̂ new, is estimated and the Gibbs
sampler is run for T iterations, under adoption of
Beta(1.5,50) priors for the θj’s. The posterior mean,
θ̄j, of each θj is recorded in θ̄.

(3) Steps (1) & (2) are repeated R times to obtain a sam-
ple of posterior means for θ across different datasets,
{θ̄(1), θ̄(2),…,θ̄(R)}.

The resulting distribution of posterior means, given by the
sample recorded in Step (3) above, should approximately
mimic the variation we would expect to see in θ̄ given dif-
ferent datasets of size n drawn from the entire racial group.

We implemented the above bootstrap re-sampling pro-
cedure for each racial group by re-sampling R = 500 new
datasets of size n from the original observed dataset. For
each of these, the Gibbs sampler was run for T = 30,000
iterations and posterior mean values of θ were recorded.
Table 4 presents a summary of the distribution of poste-
rior means across different bootstrap datasets. We can see
that there exists a reasonable amount of variation within
bootstrap distributions; e.g. by inspection of differences
between 5th and 95th percentile values. Until further col-
lection of data is possible and in an attempt to be cautious,
the upper 95th percentile value may be adopted as a suit-
able estimate of θ for substitution in the plug-in method.
This corresponds to the adoption of θ values of approxi-
mately 0.02 (Caucasian), 0.03 (Afro-Caribbean) and 0.03
(Asian), on average. Adopting values of this magnitude is
in agreement with recommendations made for PCR-based
systems in the most recent report by the National Re-
search Council (1996). When the variation in posterior
means of θ across different datasets falls below some pre-
set “acceptable” level, we may then be justified in aban-
doning the bootstrap procedure.
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Table 4 Summary of the
“bootstrap” distribution of pos-
terior means for θ under
Beta(1.5,50) priors when the
θj’s are modelled indepen-
dently

Locus 5th percentile Median Mean 75th percentile 95th percentile

Caucasian
D18 0.0071 0.0111 0.0121 0.0140 0.0202
D21 0.0066 0.0102 0.0109 0.0127 0.0174
THO1 0.0086 0.0132 0.0138 0.0158 0.0212
D8 0.0068 0.0101 0.0107 0.0121 0.0164
FGA 0.0081 0.0137 0.0147 0.0180 0.0243
VWA 0.0111 0.0213 0.0229 0.0277 0.0413
Average 0.0235

Afro-Caribbean
D18 0.0130 0.0202 0.0221 0.0252 0.0380
D21 0.0121 0.0191 0.0205 0.0238 0.0337
THO1 0.0105 0.0135 0.0142 0.0157 0.0199
D8 0.0101 0.0130 0.0133 0.0144 0.0179
FGA 0.0151 0.0252 0.0272 0.0321 0.0462
VWA 0.0176 0.0293 0.0306 0.0359 0.0479
Average 0.0339

Asian
D18 0.0117 0.0173 0.0188 0.0219 0.0307
D21 0.0095 0.0139 0.0149 0.0169 0.0232
THO1 0.0123 0.0179 0.0192 0.0221 0.0302
D8 0.0131 0.0215 0.0233 0.0272 0.0405
FGA 0.0123 0.0212 0.0225 0.0264 0.0371
VWA 0.0140 0.0220 0.0242 0.0283 0.0395
Average 0.0335



We note that an alternative to bootstrapping is simply
to adopt some upper percentile of the posterior distribu-
tion for θ based on the single observed dataset D. For ex-
ample, the upper posterior 95th percentile values for the
θj’s given in Table 1 are all higher than the corresponding
95th percentile values for the posterior means given in
Table 4. If these are deemed too high, then a lower per-
centile may be considered more appropriate. In any case,
under a Bayesian approach, all the uncertainty due to
sampling variation is contained in the posterior distribu-
tion and, hence, we may avoid the need for lengthy boot-
strap calculations in each case.
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